Mixture of multivariate Gaussian processes for classification of irregularly sampled satellite image time-series
نویسندگان
چکیده
The classification of irregularly sampled Satellite image time-series (SITS) is investigated in this paper. A multivariate Gaussian process mixture model proposed to address the irregular sampling, nature and scalability large data-sets. spectral temporal correlation handled using a Kronecker structure on covariance operator process. allows both for imputation missing values. Experimental results simulated real SITS data illustrate importance taking into account ensure good behavior terms accuracy reconstruction errors.
منابع مشابه
A scalable end-to-end Gaussian process adapter for irregularly sampled time series classification
We present a general framework for classification of sparse and irregularly-sampled time series. The properties of such time series can result in substantial uncertainty about the values of the underlying temporal processes, while making the data difficult to deal with using standard classification methods that assume fixeddimensional feature spaces. To address these challenges, we propose an u...
متن کاملTime Series Analysis for Irregularly Sampled Data
Many spectral estimation methods for irregularly sampled data tend to be heavily biased at higher frequencies or fail to produce a spectrum that is positive for all frequencies. A time series spectral estimator is introduced that applies the principles of a new automatic equidistant missing data algorithm to unevenly spaced data. This time series estimator approximates the irregular data by a n...
متن کاملComparison of correlation analysis techniques for irregularly sampled time series
Geoscientific measurements often provide time series with irregular time sampling, requiring either data reconstruction (interpolation) or sophisticated methods to handle irregular sampling. We compare the linear interpolation technique and different approaches for analyzing the correlation functions and persistence of irregularly sampled time series, as Lomb-Scargle Fourier transformation and ...
متن کاملClassification of Sparse and Irregularly Sampled Time Series with Mixtures of Expected Gaussian Kernels and Random Features
This paper presents a kernel-based framework for classification of sparse and irregularly sampled time series. The properties of such time series can result in substantial uncertainty about the values of the underlying temporal processes, while making the data difficult to deal with using standard classification methods that assume fixeddimensional feature spaces. To address these challenges, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics and Computing
سال: 2022
ISSN: ['0960-3174', '1573-1375']
DOI: https://doi.org/10.1007/s11222-022-10145-8